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Matrix BFKL+DGLAP, G. Salam (p. 2)
Introduction Introduction

This talk is a progress report on a long-term project to put together
DGLAP and the linear regime ofBFKL evolution, including higher order
and running-coupling corrections.

Main groups active:

I Altarelli, Ball, Forte (+ Falgari, Marzano) aka ABF

I Ciafaloni, Colferai, GPS, Sta�sto aka CCSS

+++ Thorne & White
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Introduction Motivation

When looking at proton structure we can establish di�erent evolution
regimes:

But:
I Regions of validity not clearly

delimited
I Higher orders of DGLAP

contaminated by leading BFKL:

Pgg(x) '
�� s

x
+ �� 4

s
� (3)

3
ln3 x

x
+ : : :

I Higher orders of BFKL
contaminated by leading DGLAP:

K (k; k0) ' �� s � �� 2
s
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k02
+ : : :
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Introduction DGLAP, BFKL (�xed coupling)

DGLAP

Integro(x){di�erential( Q2) eqn for
integratedgluon dist.,g:

dg(x; Q2)
d ln Q2 =

Z
dz
z

Pgg(z)g(
x
z

; Q2)

BFKL

Integro(k){di�erential( x) eqn for
unintegratedgluon dist.,G:

dG(x; k2)
d ln 1=x

=

Z
dk02

k02
K (k=k0)G(x; k02)

k, Q are transverse scales;x is longitudinal mom. fraction
xg(x; Q2) =

RQ d2kG(x; k2)

Both DGLAP and BFKL relate? structure to long. structure:

I given long. struct. DGLAP gives you? struct. evolution
I given? struct. BFKL gives you long. struct. evolution

When calculated at all orders they must encode the same physi cs.
Inevitable that one contaminated by other at �xed order
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Introduction NLL Green function solution

If DGLAP contaminates BFKL does it matter? Can we not just take the
perturbative expansion? Try LL,then NLL BFKL.
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Choices that formally only a�ect
NNLLx:
I scale of� s

I `energy-scale's0 (Y = ln s=s0).

lead to completely di�erent an-
swers

Source of instability is presence in NLL BFKL of a truncated subset of
DGLAP. Only way to get stability is to include full DGLAP.
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Merging BFKL & DGLAP Merging BFKL & DGLAP

Long history of work on merging leading BFKL and DGLAP.
CCFM '88; Lund group� '95; Durham-Cracow group� '95;

Two approaches have been used in order to combine BFKL and DGLAP
including higher orders:

I Establish all-order relation (duality relation) between splitting functions
(DGLAP) and evolution kernel (BFKL). Use that to simultaneously
construct splitting functions consistent with BFKL kerneland vice-versa.

Altarelli, Ball & Forte '99{

I Establish a more general equation that embodies both BFKL and
DGLAP (double-integral equation):

G(x; k2) = G0(x; k2) +
Z

dz
Z

dk02 dk02

k02
K (z; k; k0)G(x=z; k02)

From that, deducee�ective splitting function and BFKL kernel.
Ciafaloni, Colferai, GPS & Sta�sto, '98-
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Merging BFKL & DGLAP Pure glue case, LLx+LO

Write Kernel as power series in� s: K =
X

n=0

�̂ nKn �̂ = � s=2�

First order (LLx-LO) has two parts:

K0(
; ! ) =
2CA

!
� !

0 (
 )
| {z }
BFKL (LL x)

+
�
� gg;0(! ) �

2CA

!

�
� !

c (
 )
| {z }

�nite- x DGLAP (LO)

use Mellin transforms:
 $ k2, ! $ ln 1=x, � gg;0(! ) $ Pgg(x)
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use Mellin transforms:
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BFKL piece has usual transverse
structure with kinematic constraint
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Note symmetry
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collinear kernel:
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X
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Next order (NLx-NLO) also has two parts:

K1(
; ! ) =
(2CA)2
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~� !
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 ) + ~� gg;1(! ) � !
c (
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with ~� 1 and ~� gg;1(! ) adjusted so as to reproduce NLx BFKL and NLO
DGLAP.
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Merging BFKL & DGLAP Green fn. from improved kernel
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Merging BFKL & DGLAP Green function) e�ective Pgg

Construct a gluon density from Green function (takek � k0):

xg(x; Q2) �
Z Q

d2k G(� 0= k2) (ln 1=x; k; k0)

Numerically solve equation for e�ective splitting function, Pgg;e� (z; Q2) :

dg(x; Q2)
d lnQ2 =

Z
dz
z

Pgg;e� (z; Q2) g
� x

z
; Q2

�

Factorisation
I Splitting function:

red paths
I Green function:

all paths
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Merging BFKL & DGLAP One channelPgg: ABF v. CCSS

Altarelli, Ball & Forte
have also calculated ef-
fective Pgg :
I similar physical

ingredients
I completely di�erent

`implementation'

Main features similar
between CCSS & ABF.

In particular splitting-fn
hasdip at x � 10� 3.
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Two channels

Formalism
Two channels

BFKL is naturally single-channel Only gluon production has 1=x divergence

DGLAP is multi-channel Quarks and gluons both have collinear divergences

So far we hadignored the multi-channel aspect,for simplicity. But:

I If we are to use small-x resummed splitting functions, we need the
whole singlet matrix

I Including quarks in evolution may provide a convenient way of
resumming collinear logs in impact factors

Generalise double-integral eqn to two channels

Add 
avour indices to Green function and kernel

Gab(x; k2; k2
0 ) = � 2(k � k0)� ab +

Z
dz

Z
dk02 dk02

k02
Kac(z; k; k0)Gcb(x=z; k02; k2

0 )
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Two channels

Formalism
Symmetry and subtleties

abcd

Want to encode two strongly or-
dered collinear limits

DGLAP limit : : : � dc � cb � ba : : :

(
xd < xc < xb < xa

kt d � kt c � kt b � kt a

anti-DGLAP limit : : : � cd � bc � ab : : :

(
�xd > �xc > �xb > �xa

kt d � kt c � kt b � kt a

= : : : (� T )dc (� T )cb (� T )ba : : : :

Suggests sym.K (
; ! ) = K T (1 + ! � 
; ! ). But this ! spurious colour &
1=! structures, e.g.� 2

sC2
F =! 2 for g ! q ! g, in non-ordered limits.

DGLAP attaches 1=! and colour sum to leg with higherpt

BFKL attaches them to left-hand leg| inconsistent
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Two channels

Formalism
Matrix requirements

Sensibleness requirement on matrix formulation.

Use similarity transformS to reattach colour and 1=! factors in
anticollinear limit, so as to restore compatibility between DGLAP and
BFKL. Resulting symmetry is

K(1 + ! � 
; ! ) = S(! )KT (
; ! )S� 1(! ) :

Choose S, for convenience, such that

KT (
; ! ) = S(! )KT (
; ! )S� 1(! ) =) K (1 + ! � 
; ! ) = K(
; ! )

Other requirements

I Kqq, Kqg should be free of 1=! divergences at all orders
I Kgq, Kgg may at most have 1=! divergences
I No terms inKab should have any collinear divergence stronger than 1=
 .

And maintain compatibility with NLx BFKL, NLO DGLAP
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Two channels

Formalism
Matrix kernel

Structure quite similar to single-channel; LLx-LO is:

K0(
; ! ) =

0

B
@

� qq;0(! )� !
c (
 ) � qg;0(! )� !

c (
 ) + � qg(! )� !
ht (
 )

� gq;0(! )� !
c (
 ) � gg;0(! )� !

c (
 ) +
2CA

!

�
� !

0 (
 ) � � !
c (
 )

�

1

C
A

Note � qg (! ) term: allows one to setfactorisation schemeat NLO, by
modifying thehigher-twist part of the Kqg kernel.

Without having to add� 2
s=! term to K1;qg

NB: We chooseMS

Higher orders:

I Add on K1(
; ! ) to get NLx-NLO.
I put in extra higher-twist piece inK0(
; ! ) to get � 3

s=! 2

scheme-dependent terms (NLx-NLO+ ).
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Two channels

Formalism
Known limitations

I MS scheme for� n
s=! n� 1 terms inPqq, Pqg , Pgg only set up to some

�xed order (NLO, NNLO), even though known [Catani & Hautmann
'94] to all orders. Believed to be no larger than renorm-scale uncertainties

Based on study ofPgg , CCSS '06

I Formalism `predicts' that at NLx accuracy, at NNLO

� NL x
gq;2 =

CF

CA
� NL x

gg;2

But true MS [MVV '04] result di�ers by anNc-suppressed term

� NL x
gq;2 =

CF

CA

�
� NL x

gg;2 �
nf

Nc ! 2

�

Not understood, but numerically tiny< 0:5%



Matrix BFKL+DGLAP, G. Salam (p. 15)
Two channels

Formalism
Known limitations

I MS scheme for� n
s=! n� 1 terms inPqq, Pqg , Pgg only set up to some

�xed order (NLO, NNLO), even though known [Catani & Hautmann
'94] to all orders. Believed to be no larger than renorm-scale uncertainties

Based on study ofPgg , CCSS '06

I Formalism `predicts' that at NLx accuracy, at NNLO

� NL x
gq;2 =

CF

CA
� NL x

gg;2

But true MS [MVV '04] result di�ers by anNc-suppressed term

� NL x
gq;2 =

CF

CA

�
� NL x

gg;2 �
nf

Nc ! 2

�

Not understood, but numerically tiny< 0:5%



Matrix BFKL+DGLAP, G. Salam (p. 16)
Two channels

Numerical results
Intercept at �xed coupling

Power of growth of cross-sections and splitting functions at �xed coupling.
Rather similar to 2003 results:
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Two channels

Numerical results
Green function
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Green function for gluon is
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Scale uncertainties (band)
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Additionally generate quark
component, with same
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Scale uncertainties larger
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Two channels

Numerical results
Splitting functions
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In gg channel results
again similar to those
from 2003

gq channel rather simi-
lar to gg

Both havedip
at x � 10� 3

qq and qg channels
have barely any dip,
and large scale uncer-
tainties | NL x is �rst
order of generation of
small-x quarks.
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Conclusions, outlook

I Have double integral equation that contains both NLx BFKL and NLO
DGLAP in MS scheme.

I From it one can deduce Green functions and matrix of e�ectivesmall-x
resummed splitting functions.

I Gluon-channel results agree with earlier resummations, now also get full
singlet matrix.

Many options available for future

I providing splitting functions in convenient form for general use
I understanding what happens at NNLO
I extending treatment to coe�cient functions
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