Matrix combination of BFKL and DGLAP

Gavin Salam

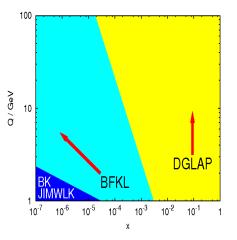
LPTHE, Universities of Paris VI and VII and CNRS

Work with M. Ciafaloni, D. Colferai and A. Stasto [arXiv:0707.1453]

ISMD 2007 Berkeley, 5–9 August 2007 This talk is a progress report on a long-term project to put together *DGLAP* and the linear regime of *BFKL* evolution, including higher order and running-coupling corrections.

Main groups active:

- Altarelli, Ball, Forte (+ Falgari, Marzano) aka ABF
 Ciafaloni, Colferai, GPS, Staśto aka CCSS
- + Thorne & White



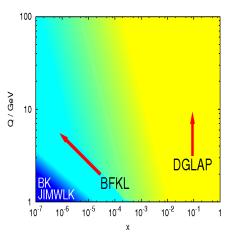
But:

 Regions of validity not clearly delimited

 Higher orders of DGLAP contaminated by leading BFKL:

$$P_{gg}(x) \simeq \frac{\bar{\alpha}_{s}}{x} + \bar{\alpha}_{s}^{4} \frac{\zeta(3)}{3} \frac{\ln^{3} x}{x} + \dots$$

Higher orders of BFKL contaminated by leading DGLAP: $K(k, k') \simeq \bar{\alpha}_{s} - \bar{\alpha}_{s}^{2} \frac{11}{12} \ln \frac{k^{2}}{k'^{2}} + \dots$



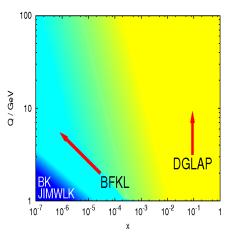
<u>But:</u>

 Regions of validity not clearly delimited

 Higher orders of DGLAP contaminated by leading BFKL:

$$P_{gg}(x) \simeq \frac{\bar{\alpha}_{s}}{x} + \bar{\alpha}_{s}^{4} \frac{\zeta(3)}{3} \frac{\ln^{3} x}{x} + \dots$$

Higher orders of BFKL contaminated by leading DGLAP: $K(k, k') \simeq \bar{\alpha}_{s} - \bar{\alpha}_{s}^{2} \frac{11}{12} \ln \frac{k^{2}}{k'^{2}} + \dots$

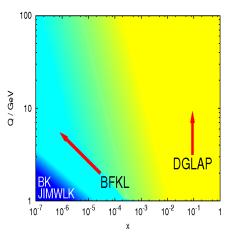


But:

- Regions of validity not clearly delimited
- Higher orders of DGLAP contaminated by leading BFKL:

$$P_{gg}(x) \simeq \frac{\bar{\alpha}_{s}}{x} + \bar{\alpha}_{s}^{4} \frac{\zeta(3)}{3} \frac{\ln^{3} x}{x} + \dots$$

► Higher orders of BFKL contaminated by leading DGLAP: $K(k, k') \simeq \bar{\alpha}_{s} - \bar{\alpha}_{s}^{2} \frac{11}{12} \ln \frac{k^{2}}{k'^{2}} + \dots$



But:

- Regions of validity not clearly delimited
- Higher orders of DGLAP contaminated by leading BFKL:

$$P_{gg}(x) \simeq \frac{\bar{\alpha}_{s}}{x} + \bar{\alpha}_{s}^{4} \frac{\zeta(3)}{3} \frac{\ln^{3} x}{x} + \dots$$

► Higher orders of BFKL contaminated by leading DGLAP: $K(k, k') \simeq \bar{\alpha}_{s} - \bar{\alpha}_{s}^{2} \frac{11}{12} \ln \frac{k^{2}}{k'^{2}} + \dots$

DGLAP, BFKL (fixed coupling)

BFKL DGLAP Integro(x)-differential(Q^2) eqⁿ for Integro(k)-differential(x) eqⁿ *unintegrated* gluon dist., *g*: for $\frac{dG(x,k^2)}{d\ln 1/x} =$ $\frac{dg(x,Q^2)}{d\ln Q^2} =$ $\int \frac{dz}{z} P_{gg}(z) g(\frac{x}{z}, Q^2) \qquad \int \frac{dk'^2}{k'^2} K(k/k') G(x, k'^2)$ k. Q are transverse scales; x is longitudinal mom. fraction $xg(x, Q^2) = \int_{-Q}^{Q} d^2 k G(x, k^2)$

Both DGLAP and BFKL relate \perp structure to long. structure:

- ▶ given long. struct. DGLAP gives you \perp struct. evolution
- given \perp struct. BFKL gives you long. struct. evolution

When calculated at all orders they must encode the same physics. Inevitable that one contaminated by other at fixed order

DGLAP, BFKL (fixed coupling)

BFKL DGLAP Integro(x)-differential(Q^2) eqⁿ for Integro(k)-differential(x) eqⁿ *integrated* gluon dist., g: for $\frac{dG(x,k^2)}{d\ln 1/x} =$ $\frac{dg(x,Q^2)}{d\ln Q^2} =$ $\int \frac{dz}{z} P_{gg}(z) g(\frac{x}{z}, Q^2) \qquad \qquad \int \frac{d \ln 1/x}{\int \frac{dk'^2}{k'^2} K(k/k') G(x, k'^2)}$ k. Q are transverse scales; x is longitudinal mom. fraction $xg(x, Q^2) = \int_{-Q}^{Q} d^2 k G(x, k^2)$

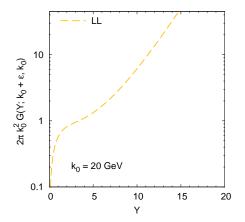
Both DGLAP and BFKL relate \perp structure to long. structure:

- ▶ given long. struct. DGLAP gives you \bot struct. evolution
- \blacktriangleright given \perp struct. BFKL gives you long. struct. evolution

When calculated at all orders they must encode the same physics. Inevitable that one contaminated by other at fixed order

NLL Green function solution

If DGLAP contaminates BFKL does it matter? Can we not just take the perturbative expansion? Try LL, then NLL BFKL.



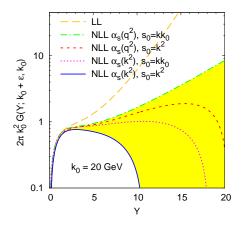
Choices that formally only affect NNLLx:

- ▶ scale of α_s
- 'energy-scale' s_0 ($Y = \ln s/s_0$). lead to completely different an-

Source of instability is presence in NLL BFKL of a truncated subset of DGLAP. Only way to get stability is to include full DGLAP.

NLL Green function solution

If DGLAP contaminates BFKL does it matter? Can we not just take the perturbative expansion? Try LL, then NLL BFKL.



Choices that formally only affect NNLLx:

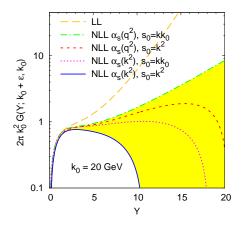
▶ scale of α_s

• 'energy-scale' s_0 ($Y = \ln s/s_0$). lead to completely different answers

Source of instability is presence in NLL BFKL of a truncated subset of DGLAP. Only way to get stability is to include full DGLAP.

NLL Green function solution

If DGLAP contaminates BFKL does it matter? Can we not just take the perturbative expansion? Try LL, then NLL BFKL.



Choices that formally only affect NNLLx:

▶ scale of α_s

• 'energy-scale' s_0 ($Y = \ln s/s_0$). lead to completely different answers

Source of instability is presence in NLL BFKL of a truncated subset of DGLAP. Only way to get stability is to include full DGLAP.

Long history of work on merging leading BFKL and DGLAP. CCFM '88; Lund group \sim '95; Durham-Cracow group \sim '95;

Two approaches have been used in order to combine BFKL and DGLAP *including higher orders:*

- Establish all-order relation (*duality relation*) between splitting functions (DGLAP) and evolution kernel (BFKL). Use that to simultaneously construct splitting functions consistent with BFKL kernel and vice-versa. Altarelli, Ball & Forte '99–
- Establish a more general equation that embodies both BFKL and DGLAP (*double-integral equation*):

$$G(x,k^2) = G_0(x,k^2) + \int dz \int dk'^2 \frac{dk'^2}{k'^2} K(z,k,k') G(x/z,k'^2)$$

From that, deduce *effective* splitting function and BFKL kernel. Ciafaloni, Colferai, GPS & Staśto, '98Long history of work on merging leading BFKL and DGLAP. CCFM '88; Lund group \sim '95; Durham-Cracow group \sim '95;

Two approaches have been used in order to combine BFKL and DGLAP *including higher orders:*

- Establish all-order relation (*duality relation*) between splitting functions (DGLAP) and evolution kernel (BFKL). Use that to simultaneously construct splitting functions consistent with BFKL kernel and vice-versa. Altarelli, Ball & Forte '99–
- Establish a more general equation that embodies both BFKL and DGLAP (*double-integral equation*):

$$G(x,k^2,k_0^2) = \delta^2(k-k_0) + \int dz \int dk'^2 \frac{dk'^2}{k'^2} K(z,k,k') G(x/z,k'^2,k_0^2)$$

From that, deduce *effective* splitting function and BFKL kernel. Ciafaloni, Colferai, GPS & Staśto, '98Matrix BFKL+DGLAP, G. Salam (p. 7) Merging BFKL & DGLAP

Pure glue case, LLx+LO

Write Kernel as power series in
$$\alpha_s$$
: $K = \sum_{n=0} \hat{\alpha}^n K_n$ $\hat{\alpha} = \alpha_s/2\pi$

First order (*LLx-LO*) has two parts:

$$K_{0}(\gamma,\omega) = \underbrace{\frac{2C_{A}}{\omega}\chi_{0}^{\omega}(\gamma)}_{\text{BFKL (LLx)}} + \underbrace{\left[\Gamma_{gg,0}(\omega) - \frac{2C_{A}}{\omega}\right]\chi_{c}^{\omega}(\gamma)}_{\text{finite-x DGLAP (LO)}}$$

use Mellin transforms: $\gamma \leftrightarrow k^2$, $\omega \leftrightarrow \ln 1/x$, $\Gamma_{gg,0}(\omega) \leftrightarrow P_{gg}(x)$

Pure glue case, LLx+LO

Write Kernel as power series in
$$\alpha_s$$
: $K = \sum_{n=0} \hat{\alpha}^n K_n$ $\hat{\alpha} = \alpha_s/2\pi$

First order (*LLx-LO*) has two parts:

$$K_{0}(\gamma,\omega) = \underbrace{\frac{2C_{A}}{\omega}\chi_{0}^{\omega}(\gamma)}_{\text{BFKL (LLx)}} + \underbrace{\left[\Gamma_{gg,0}(\omega) - \frac{2C_{A}}{\omega}\right]\chi_{c}^{\omega}(\gamma)}_{\text{finite-x DGLAP (LO)}}$$

use Mellin transforms: $\gamma \leftrightarrow k^2$, $\omega \leftrightarrow \ln 1/x$, $\Gamma_{gg,0}(\omega) \leftrightarrow P_{gg}(x)$

BFKL piece has usual transverse | DGLAP remainder piece has a structure with *kinematic constraint*

$$\begin{array}{l} \chi_0^{\omega}(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1 + \omega - \gamma) \\ \text{Note symmetry } \gamma \leftrightarrow 1 - \gamma + \omega \end{array}$$

Multiplied by $\alpha_{\rm s}(q^2)$, $\vec{q} = \vec{k} - \vec{k}'$

collinear kernel:

$$\chi^{\omega}_{c}(\gamma) = \frac{1}{\gamma} + \frac{1}{1 + \omega - \gamma}$$

Multiplied by $\alpha_{s}(k_{>}^{2})$

1

Pure glue case, NLx+NLO

Write Kernel as power series in
$$\alpha_s$$
: $K = \sum_{n=0} \hat{\alpha}^n K_n$ $\hat{\alpha} = \alpha_s/2\pi$

First order (*LLx-LO*) has two parts:

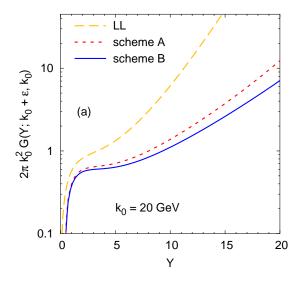
$$K_{0}(\gamma,\omega) = \underbrace{\frac{2C_{A}}{\omega}\chi_{0}^{\omega}(\gamma)}_{\text{BFKL (LLx)}} + \underbrace{\left[\Gamma_{gg,0}(\omega) - \frac{2C_{A}}{\omega}\right]\chi_{c}^{\omega}(\gamma)}_{\text{finite-x DGLAP (LO)}}$$

use Mellin transforms: $\gamma \leftrightarrow k^2$, $\omega \leftrightarrow \ln 1/x$, $\Gamma_{gg,0}(\omega) \leftrightarrow P_{gg}(x)$

Next order (NLx-NLO) also has two parts:

$$K_{1}(\gamma,\omega) = \frac{(2C_{A})^{2}}{\omega} \tilde{\chi}_{1}^{\omega}(\gamma) + \tilde{\Gamma}_{gg,1}(\omega) \chi_{c}^{\omega}(\gamma)$$

with $\tilde{\chi}_1$ and $\tilde{\Gamma}_{gg,1}(\omega)$ adjusted so as to reproduce NLx BFKL and NLO DGLAP.



NLO DGLAP piece. NLx-LO Two schemes, to estimate degree of stability

First tried in '03. without

- ► scheme A violates mom. sum-rule at O (α²_s)
- scheme B satisfies it at all orders

Solve double-integral eq^n with each.

 $\frac{\text{Different schemes}}{\text{similar results}}$

Construct a gluon density from Green function (take $k \gg k_0$):

$$xg(x, Q^2) \equiv \int^Q d^2k \ G^{(\nu_0 = k^2)}(\ln 1/x, k, k_0)$$

Numerically solve equation for effective splitting function, $P_{gg,eff}(z, Q^2)$:

$$\frac{dg(x, Q^2)}{d \ln Q^2} = \int \frac{dz}{z} P_{gg, eff}(z, Q^2) g\left(\frac{x}{z}, Q^2\right)$$

Factorisation

 Splitting function: red pat

• Green function:

all paths

Construct a gluon density from Green function (take $k \gg k_0$):

$$xg(x, Q^2) \equiv \int^Q d^2k \ G^{(\nu_0 = k^2)}(\ln 1/x, k, k_0)$$

Numerically solve equation for effective splitting function, $P_{gg,eff}(z, Q^2)$:

$$\frac{dg(x,Q^2)}{d \ln Q^2} = \int \frac{dz}{z} P_{gg,eff}(z,Q^2) g\left(\frac{x}{z},Q^2\right)$$

Factorisation

 Splitting function: red pa

► Green function:

all paths

Construct a gluon density from Green function (take $k \gg k_0$):

$$xg(x, Q^2) \equiv \int^Q d^2k \ G^{(
u_0 = k^2)}(\ln 1/x, k, k_0)$$

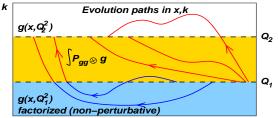
Numerically solve equation for effective splitting function, $P_{gg,eff}(z, Q^2)$:

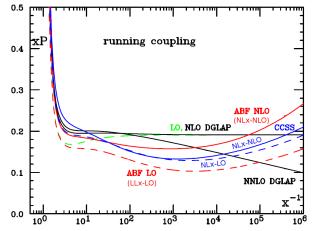
$$\frac{dg(x,Q^2)}{d \ln Q^2} = \int \frac{dz}{z} P_{gg,eff}(z,Q^2) g\left(\frac{x}{z},Q^2\right)$$

Factorisation

- Splitting function: red paths
- Green function:

all paths





Altarelli, Ball & Forte have also calculated effective P_{gg} :

- similar physical ingredients
- completely different 'implementation'

Main features similar between CCSS & ABF.

In particular splitting-fn has dip at $x \sim 10^{-3}$.

BFKL is naturally single-channelOnly gluon production has 1/x divergenceDGLAP is multi-channelQuarks and gluons both have collinear divergences

So far we had *ignored the multi-channel aspect*, for simplicity. But:

- If we are to use small-x resummed splitting functions, we need the whole singlet matrix
- Including quarks in evolution may provide a convenient way of resumming collinear logs in impact factors

Generalise double-integral eqⁿ to two channels

Add flavour indices to Green function and kernel

$$G_{ab}(x,k^2,k_0^2) = \delta^2(k-k_0)\delta_{ab} + \int dz \int dk'^2 \frac{dk'^2}{k'^2} K_{ac}(z,k,k')G_{cb}(x/z,k'^2,k_0^2)$$

BFKL is naturally single-channelOnly gluon production has 1/x divergenceDGLAP is multi-channelQuarks and gluons both have collinear divergences

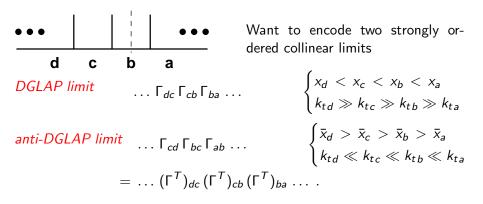
So far we had *ignored the multi-channel aspect*, for simplicity. But:

- If we are to use small-x resummed splitting functions, we need the whole singlet matrix
- Including quarks in evolution may provide a convenient way of resumming collinear logs in impact factors

Generalise double-integral eqⁿ to two channels

Add flavour indices to Green function and kernel

$$G_{ab}(x,k^2,k_0^2) = \delta^2(k-k_0)\delta_{ab} + \int dz \int dk'^2 \frac{dk'^2}{k'^2} K_{ac}(z,k,k')G_{cb}(x/z,k'^2,k_0^2)$$



Suggests sym. $K(\gamma, \omega) = K^T (1 + \omega - \gamma, \omega)$. But this \rightarrow spurious colour & $1/\omega$ structures, e.g. $\alpha_s^2 C_F^2/\omega^2$ for $g \rightarrow q \rightarrow g$, in non-ordered limits.

DGLAP attaches $1/\omega$ and colour sum to leg with higher p_t BFKL attaches them to left-hand leg — **inconsistent** Sensibleness requirement on matrix formulation.

Use similarity transform S to reattach colour and $1/\omega$ factors in anticollinear limit, so as to restore compatibility between DGLAP and BFKL. Resulting symmetry is

$$\mathcal{K}(1+\omega-\gamma,\omega)=\mathcal{S}(\omega)\mathcal{K}^{\mathsf{T}}(\gamma,\omega)\mathcal{S}^{-1}(\omega)\;.$$

Choose S, for convenience, such that

 $\mathcal{K}^{\mathsf{T}}(\gamma,\omega) = \mathcal{S}(\omega)\mathcal{K}^{\mathsf{T}}(\gamma,\omega)\mathcal{S}^{-1}(\omega) \implies \mathcal{K}(1+\omega-\gamma,\omega) = \mathcal{K}(\gamma,\omega)$

Other requirements

- ▶ K_{qq} , K_{qg} should be free of $1/\omega$ divergences at all orders
- K_{gq} , K_{gg} may at most have $1/\omega$ divergences
- No terms in K_{ab} should have any collinear divergence stronger than $1/\gamma$.

And maintain compatibility with NLx BFKL, NLO DGLAP

Sensibleness requirement on matrix formulation.

Use similarity transform S to reattach colour and $1/\omega$ factors in anticollinear limit, so as to restore compatibility between DGLAP and BFKL. Resulting symmetry is

$$\mathcal{K}(1+\omega-\gamma,\omega)=\mathcal{S}(\omega)\mathcal{K}^{\mathsf{T}}(\gamma,\omega)\mathcal{S}^{-1}(\omega)\;.$$

Choose S, for convenience, such that

 $\mathcal{K}^{\mathsf{T}}(\gamma,\omega) = \mathcal{S}(\omega)\mathcal{K}^{\mathsf{T}}(\gamma,\omega)\mathcal{S}^{-1}(\omega) \implies \mathcal{K}(1+\omega-\gamma,\omega) = \mathcal{K}(\gamma,\omega)$

Other requirements

- K_{qq} , K_{qg} should be free of $1/\omega$ divergences at all orders
- K_{gq} , K_{gg} may at most have $1/\omega$ divergences
- ► No terms in K_{ab} should have any collinear divergence stronger than $1/\gamma$.

And maintain compatibility with NLx BFKL, NLO DGLAP

Structure quite similar to single-channel; LLx-LO is:

$\mathcal{K}_{0}(\gamma,\omega) = \begin{pmatrix} \Gamma_{qq,0}(\omega)\chi_{c}^{\omega}(\gamma) & \Gamma_{qg,0}(\omega)\chi_{c}^{\omega}(\gamma) + \Delta_{qg}(\omega)\chi_{ht}^{\omega}(\gamma) \\ \Gamma_{gq,0}(\omega)\chi_{c}^{\omega}(\gamma) & \Gamma_{gg,0}(\omega)\chi_{c}^{\omega}(\gamma) + \frac{2C_{A}}{\omega} [\chi_{0}^{\omega}(\gamma) - \chi_{c}^{\omega}(\gamma)] \end{pmatrix}$

Note $\Delta_{qg}(\omega)$ term: allows one to set *factorisation scheme* at NLO, by modifying the *higher-twist* part of the \mathcal{K}_{qg} kernel. Without having to add α_s^2/ω term to $\mathcal{K}_{1,qg}$ NB: We choose \overline{MS}

Higher orders:

- Add on $\mathcal{K}_1(\gamma, \omega)$ to get NL*x*-NLO.
- ▶ put in extra higher-twist piece in K₀(γ, ω) to get α³_s/ω² scheme-dependent terms (NLx-NLO⁺).

Structure quite similar to single-channel; LLx-LO is:

$$\mathcal{K}_{0}(\gamma,\omega) = \begin{pmatrix} \Gamma_{qq,0}(\omega)\chi_{c}^{\omega}(\gamma) & \Gamma_{qg,0}(\omega)\chi_{c}^{\omega}(\gamma) + \Delta_{qg}(\omega)\chi_{ht}^{\omega}(\gamma) \\ \Gamma_{gq,0}(\omega)\chi_{c}^{\omega}(\gamma) & \Gamma_{gg,0}(\omega)\chi_{c}^{\omega}(\gamma) + \frac{2C_{A}}{\omega} [\chi_{0}^{\omega}(\gamma) - \chi_{c}^{\omega}(\gamma)] \end{pmatrix}$$

Note $\Delta_{qg}(\omega)$ term: allows one to set *factorisation scheme* at NLO, by modifying the *higher-twist* part of the \mathcal{K}_{qg} kernel. Without having to add α_s^2/ω term to $\mathcal{K}_{1,qg}$ NB: We choose \overline{MS}

Higher orders:

- Add on $\mathcal{K}_1(\gamma, \omega)$ to get NLx-NLO.
- ▶ put in extra higher-twist piece in K₀(γ, ω) to get α³_s/ω² scheme-dependent terms (NLx-NLO⁺).

Structure quite similar to single-channel; LLx-LO is:

$$\mathcal{K}_{0}(\gamma,\omega) = \begin{pmatrix} \Gamma_{qq,0}(\omega)\chi_{c}^{\omega}(\gamma) & \Gamma_{qg,0}(\omega)\chi_{c}^{\omega}(\gamma) + \Delta_{qg}(\omega)\chi_{ht}^{\omega}(\gamma) \\ \Gamma_{gq,0}(\omega)\chi_{c}^{\omega}(\gamma) & \Gamma_{gg,0}(\omega)\chi_{c}^{\omega}(\gamma) + \frac{2C_{A}}{\omega} [\chi_{0}^{\omega}(\gamma) - \chi_{c}^{\omega}(\gamma)] \end{pmatrix}$$

Note $\Delta_{qg}(\omega)$ term: allows one to set *factorisation scheme* at NLO, by modifying the *higher-twist* part of the \mathcal{K}_{qg} kernel. Without having to add α_s^2/ω term to $\mathcal{K}_{1,qg}$ NB: We choose \overline{MS}

Higher orders:

- Add on $\mathcal{K}_1(\gamma, \omega)$ to get NL*x*-NLO.
- ▶ put in extra higher-twist piece in K₀(γ, ω) to get α³_s/ω² scheme-dependent terms (NLx-NLO⁺).

- MS scheme for αⁿ_s/ωⁿ⁻¹ terms in P_{qq}, P_{gg}, P_{gg} only set up to some fixed order (NLO, NNLO), even though known [Catani & Hautmann '94] to all orders. Believed to be no larger than renorm-scale uncertainties Based on study of P_{gg}, CCSS '06
- ▶ Formalism 'predicts' that at NLx accuracy, at NNLO

$$\Gamma^{\mathrm{NL}x}_{gq,2} = rac{C_F}{C_A} \Gamma^{\mathrm{NL}x}_{gg,2}$$

But true \overline{MS} [MVV '04] result differs by an N_c -suppressed term

$$\Gamma_{gq,2}^{\mathrm{NL}x} = \frac{C_F}{C_A} \left[\Gamma_{gg,2}^{\mathrm{NL}x} - \frac{n_f}{N_c \omega^2} \right]$$

Not understood, but numerically tiny < 0.5%

- MS scheme for αⁿ_s/ωⁿ⁻¹ terms in P_{qq}, P_{qg}, P_{gg} only set up to some fixed order (NLO, NNLO), even though known [Catani & Hautmann '94] to all orders. Believed to be no larger than renorm-scale uncertainties Based on study of P_{gg}, CCSS '06
- Formalism 'predicts' that at NLx accuracy, at NNLO

$$\Gamma_{gq,2}^{\mathrm{NL}x} = rac{C_F}{C_A} \Gamma_{gg,2}^{\mathrm{NL}x}$$

But true \overline{MS} [MVV '04] result differs by an N_c -suppressed term

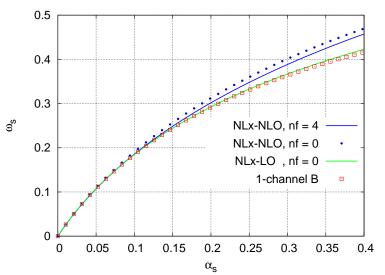
$$\Gamma_{gq,2}^{\mathrm{NL}x} = \frac{C_F}{C_A} \left[\Gamma_{gg,2}^{\mathrm{NL}x} - \frac{n_f}{N_c \omega^2} \right]$$

Not understood, but numerically tiny < 0.5%

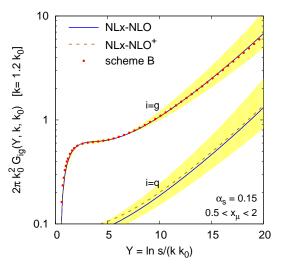
Matrix BFKL+DGLAP, G. Salam (p. 16) Two channels Numerical results

Intercept at fixed coupling

Power of growth of cross-sections and splitting functions at fixed coupling. Rather similar to 2003 results:



Matrix BFKL+DGLAP, G. Salam (p. 17) Two channels Numerical results



Green function for gluon is very similar to 2003 results. Scale uncertainties (band) under control

Additionally generate quark component, with same power-growth, but suppressed by $\sim \alpha_{\rm s}$.

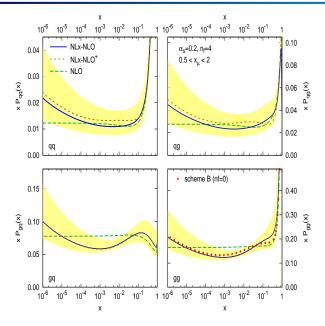
Scale uncertainties larger — radiative generation

NNLO part of NLx scheme terms (NLO⁺) have little impact.

Matrix BFKL+DGLAP, G. Salam (p. 18)

-Numerical results

Splitting functions



In gg channel results again similar to those from 2003 gq channel rather similar to gg Both have dip at $x \sim 10^{-3}$

qq and qg channels have barely any dip, and large scale uncertainties — NLx is first order of generation of small-x quarks.

- ► Have double integral equation that contains both NLx BFKL and NLO DGLAP in MS scheme.
- ► From it one can deduce Green functions and matrix of effective small-*x* resummed splitting functions.
- Gluon-channel results agree with earlier resummations, now also get full singlet matrix.

Many options available for future

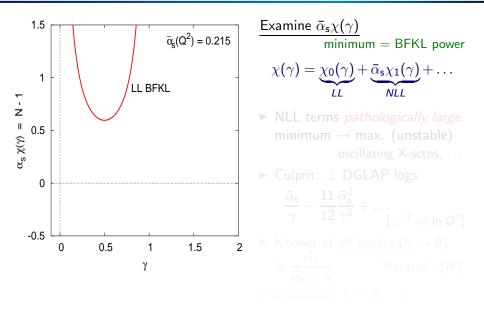
- providing splitting functions in convenient form for general use
- understanding what happens at NNLO
- extending treatment to coefficient functions

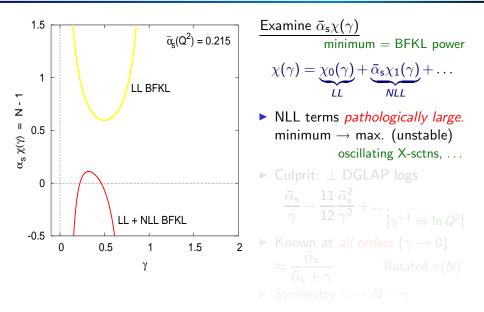
- ► Have double integral equation that contains both NLx BFKL and NLO DGLAP in MS scheme.
- ► From it one can deduce Green functions and matrix of effective small-*x* resummed splitting functions.
- Gluon-channel results agree with earlier resummations, now also get full singlet matrix.

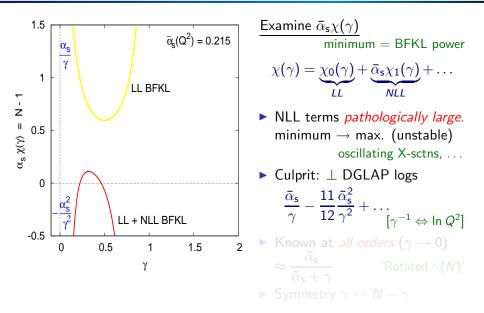
Many options available for future

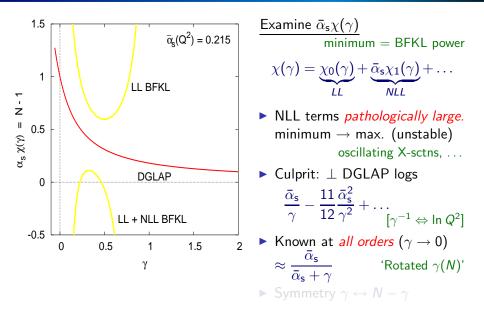
- providing splitting functions in convenient form for general use
- understanding what happens at NNLO
- extending treatment to coefficient functions

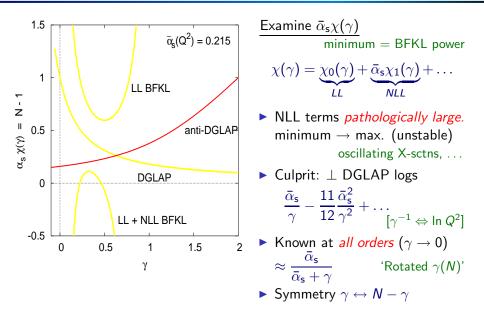
EXTRAS

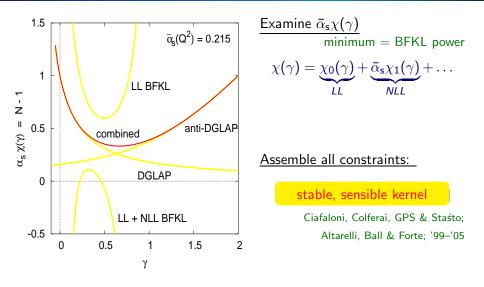


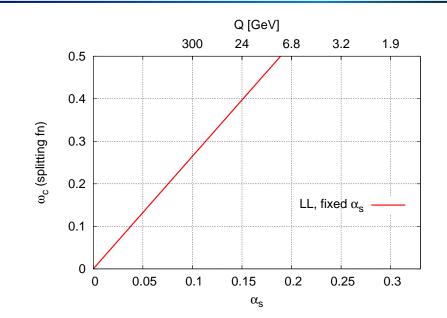


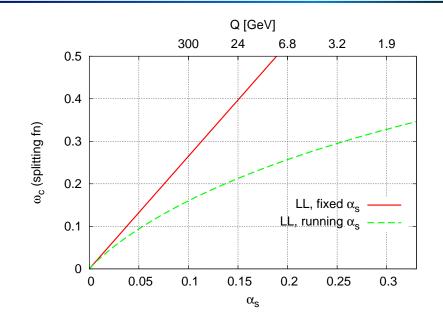


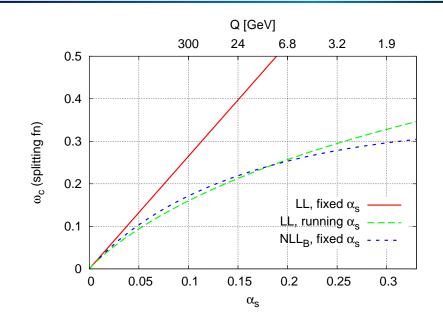


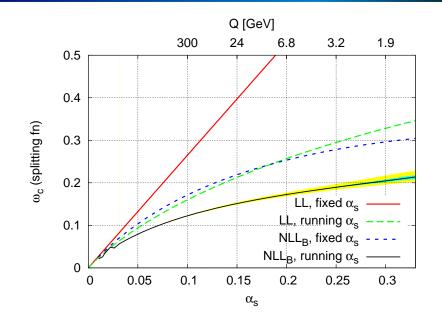












Similarity transforms

$$\begin{split} S &= \begin{pmatrix} 2n_f N_c f_q(\omega) & 0 \\ 0 & (N_c^2 - 1) f_g(\omega) \end{pmatrix}, \\ \overline{\Gamma} &= S \Gamma^T S^{-1} = \begin{pmatrix} \Gamma_{qq} & \frac{n_f}{C_F} \frac{f_q(\omega)}{f_g(\omega)} \Gamma_{gq} \\ \frac{C_F}{n_f} \frac{f_g(\omega)}{f_q(\omega)} \Gamma_{qg} & \Gamma_{gg} \end{pmatrix}, \\ \mathcal{K} &\simeq \frac{\Gamma}{\gamma} + \frac{\overline{\Gamma}}{1 + \omega - \gamma}, \\ f_q(\omega) &= \frac{2T_R}{\omega + 3} \implies \overline{\Gamma} = \Gamma, \end{split}$$

Higher-order kernel

$$\mathcal{K}(\alpha_{\rm s},\gamma,\omega) \equiv \sum_{n,m,p=0}^{\infty} {}_{p}\mathcal{K}_{n}^{(m)} \hat{\alpha}^{n+1}\gamma^{m-1}\omega^{p-1} , \qquad \hat{\alpha} \equiv \frac{\alpha_{\rm s}}{2\pi}$$

$$\mathcal{K}_1 = \left(\Gamma_1 - \mathcal{K}_0^{(1)} \mathcal{K}_0^{(0)} \right) \chi_c^{\omega} + (2C_A)^2 \left(\frac{1}{\omega} - \frac{2}{1+\omega} \right) \begin{pmatrix} 0 & 0\\ 0 & \tilde{\chi}_1^{\omega} - \tilde{\chi}_1^{(0)} \chi_c^{\omega} \end{pmatrix}$$

$$\tilde{\chi}_1^{\omega=0} \equiv \tilde{\chi}_1 = \frac{{}_0\mathcal{K}_{gg,1}}{(2\mathcal{C}_A)^2} = \mathcal{K}_1^{\mathrm{BFKL}} - \frac{\left[{}_0\mathcal{K}_{0\ 1}\mathcal{K}_0\right]_{gg}}{(2\mathcal{C}_A)^2}$$